<span style="font-size:16px;">  FM是頻率調制系統的簡稱,屬于無線電頻率傳輸技術中的一種。</span></p><p><span style="font-size:16px;">  聽覺有道指出在助聽領域中,FM系統被廣泛應用于特殊教育學校、語訓機構等集體教學場所。</span></p><p><span style="font-size:16px;">  FM系統主要由三個部分組成:</span></p><p><span style="font-size:16px;">  1.麥克風</span></p><p><span style="font-size:16px;">  2.轉換器</span></p><p><span style="font-size:16px;">  3.接收器</span></p><p><span style="font-size:16px;">  麥克風拾取聲音并將其轉換為電信號,傳送至轉換器。</span></p><p><span style="font-size:16px;">  該電信號不會被轉換為其它形式的能量,而是對轉換器中的電磁波進行調制(被調制的電磁波通常稱為載波)。</span></p><p><span style="font-size:16px;">  當有信號通過時,該信號會對載波的頻率進行調制,從而產生電磁波被接收器識別,最后轉換為與原始信號大小相同的電壓,這一過程被稱為解調。</span></p><p><span style="font-size:16px;">  然而,周圍環境中存在諸多的電磁波信號(如手機、遙控器、收音機等),接收器要怎樣才能識別到發射器發出的電磁波信號?</span></p><p><span style="font-size:16px;">  當兩個發射器發出的電磁波頻率十分相近時,接收器會同時接收這兩個信號嗎?</span></p><p><span style="font-size:16px;">  接收器對發射器發出的電磁波信號十分敏感,只有當發射器的電磁波信號與接收器相匹配時,接收器才會進行識別。</span></p><p><span style="font-size:16px;">  事實上,即使兩個發射器的電磁波頻率十分相近,也可以通過改變他們的電磁波譜來實現區分。</span></p><p><span style="font-size:16px;">  對于兩個頻率相同或接近的信號,只有較強的信號會被接收器識別。</span></p><p><span style="font-size:16px;">  一旦接收器與其中一個發射器鎖定,無論信號強度如何變化,兩者都能保持持續的連接。</span></p><p><span style="font-size:16px;">  載波的強度變化并不會使調制后的信號強度發生改變,這使得FM系統在一定范圍內并不會因發射器和接收器之間的距離變化而使信號強度變弱。</span></p><p><span style="font-size:16px;">  也就是說,當FM系統被用于教學時,無論聽者(一般是佩戴FM接收器的學生)是否靠近說話者(一般是佩戴FM發射器的教師),或是遠離說話者,其所接收到的音頻信號強度都是相同的。</span></p><p><span style="font-size:16px;">  但是,一些金屬物體會對發射器發出的電磁波產生阻礙作用,從而降低遠距離接收器獲得的音頻信號強度。</span></p><p><span style="font-size:16px;">  此外,金屬物體還會對電磁波產生反射效應,這種反射作用會衰減一部分發射器發出的電磁波,使得房間或教室內某些地方的信號強度較弱。</span></p><p><span style="font-size:16px;">  當接收器位于這些區域時,會因無法檢測載波而出現短暫的信號丟失,從而使聽者出現無法聽見聲音或只聽見噪聲的現象。</span></p><p><span style="font-size:16px;"><br /></span></p><p style="text-align: center;"><span style="font-size:16px;"><img src="/upfiles/201804160139251889.jpg" alt="" /><br /></span></p><p style="text-align: center;"><span style="font-size:16px;"><br /></span></p><p><span style="font-size:16px;">  FM系統能與助聽器相連接,主要通過以下4種方式:</span></p><p><span style="font-size:16px;">  1. 按鈕式耳機</span></p><p><span style="font-size:16px;">  FM接收器可安裝于按鈕式耳機中,并直接與助聽器用戶的耳模相耦合。</span></p><p><span style="font-size:16px;">  這種方法構造簡單,無法安裝音量調節旋鈕或其它形式的調控裝置,使得用戶無法根據自己的聽力損失需求調節音量大小。</span></p><p><span style="font-size:16px;">  2. 音頻傳輸線</span></p><p><span style="font-size:16px;">  通過音頻傳輸線與助聽器相耦合,可以直接將接收器中的音頻信號傳送到助聽器內,避免信號丟失。</span></p><p><span style="font-size:16px;">  然而,音頻線的隱蔽性較差,長時間使用易出現斷裂,因此并未得到普及。</span></p><p><span style="font-size:16px;">  3. 磁感應項圈</span></p><p><span style="font-size:16px;">  磁感應項圈可佩戴在用戶的脖子上,將接收器發出的信號轉變為磁信號,通過助聽器內的拾音線圈進行接收。</span></p><p><span style="font-size:16px;">  該方法最大的優點是隱蔽性佳,但多次轉換易造成信號丟失,發出的磁信號也容易受到其它電磁波的干擾(如手機、收音機等發出的電磁信號)。</span></p><p><span style="font-size:16px;">  當扭轉頭部時,較靠近頭部一側的磁信號會減弱,使得用戶接收到的音頻信號不穩定(例如,當兒童感覺上課內容乏味,出現困意時,頭常常會不自主的低下,若此時佩戴磁感應項圈接收裝置,會使前方的信號受阻,使兒童無法聽見聲音而出現更“不感興趣”的表現)。</span></p><p><span style="font-size:16px;">  4. FM助聽器及音靴</span></p><p><span style="font-size:16px;">  為獲得穩定舒適的音質,又不影響美觀,一種具備FM功能的助聽器已逐漸取代上述裝置,從而更有效的實現助聽器與FM系統的融合。</span></p><p><span style="font-size:16px;">  而一些沒有FM功能的助聽器,還可以通過外接音靴(一種能與助聽器對接的FM接收器裝置)來實現。</span></p><p><span style="font-size:16px;">  目前,FM助聽器和音靴是眾多助聽器耦合方式中使用最廣泛的一種。</span></p><p><span style="font-size:16px;">  更多詳情請登錄www.hnghng.cn。</span></p>" />

99国产在线视频-夜夜嗨网站-麻豆chinese新婚xxx-国产黄色大片免费看-日韩在线一区二区三区免费视频-国产传媒一区二区三区-99ri国产精品-一级黄色a-我想看黄色毛片-国产亚洲自拍av-免费ā片在线观看-日本全棵写真视频在线观看-学生妹无套内射正在播放-亚洲图片一区二区三区-国产suv精品一区二区88l

簡析助聽器技術:FM系統
時間:2018/4/16 13:39:42 點擊:4788

  FM是頻率調制系統的簡稱,屬于無線電頻率傳輸技術中的一種。

  聽覺有道指出在助聽領域中,FM系統被廣泛應用于特殊教育學校、語訓機構等集體教學場所。

  FM系統主要由三個部分組成:

  1.麥克風

  2.轉換器

  3.接收器

  麥克風拾取聲音并將其轉換為電信號,傳送至轉換器。

  該電信號不會被轉換為其它形式的能量,而是對轉換器中的電磁波進行調制(被調制的電磁波通常稱為載波)。

  當有信號通過時,該信號會對載波的頻率進行調制,從而產生電磁波被接收器識別,最后轉換為與原始信號大小相同的電壓,這一過程被稱為解調。

  然而,周圍環境中存在諸多的電磁波信號(如手機、遙控器、收音機等),接收器要怎樣才能識別到發射器發出的電磁波信號?

  當兩個發射器發出的電磁波頻率十分相近時,接收器會同時接收這兩個信號嗎?

  接收器對發射器發出的電磁波信號十分敏感,只有當發射器的電磁波信號與接收器相匹配時,接收器才會進行識別。

  事實上,即使兩個發射器的電磁波頻率十分相近,也可以通過改變他們的電磁波譜來實現區分。

  對于兩個頻率相同或接近的信號,只有較強的信號會被接收器識別。

  一旦接收器與其中一個發射器鎖定,無論信號強度如何變化,兩者都能保持持續的連接。

  載波的強度變化并不會使調制后的信號強度發生改變,這使得FM系統在一定范圍內并不會因發射器和接收器之間的距離變化而使信號強度變弱。

  也就是說,當FM系統被用于教學時,無論聽者(一般是佩戴FM接收器的學生)是否靠近說話者(一般是佩戴FM發射器的教師),或是遠離說話者,其所接收到的音頻信號強度都是相同的。

  但是,一些金屬物體會對發射器發出的電磁波產生阻礙作用,從而降低遠距離接收器獲得的音頻信號強度。

  此外,金屬物體還會對電磁波產生反射效應,這種反射作用會衰減一部分發射器發出的電磁波,使得房間或教室內某些地方的信號強度較弱。

  當接收器位于這些區域時,會因無法檢測載波而出現短暫的信號丟失,從而使聽者出現無法聽見聲音或只聽見噪聲的現象。




  FM系統能與助聽器相連接,主要通過以下4種方式:

  1. 按鈕式耳機

  FM接收器可安裝于按鈕式耳機中,并直接與助聽器用戶的耳模相耦合。

  這種方法構造簡單,無法安裝音量調節旋鈕或其它形式的調控裝置,使得用戶無法根據自己的聽力損失需求調節音量大小。

  2. 音頻傳輸線

  通過音頻傳輸線與助聽器相耦合,可以直接將接收器中的音頻信號傳送到助聽器內,避免信號丟失。

  然而,音頻線的隱蔽性較差,長時間使用易出現斷裂,因此并未得到普及。

  3. 磁感應項圈

  磁感應項圈可佩戴在用戶的脖子上,將接收器發出的信號轉變為磁信號,通過助聽器內的拾音線圈進行接收。

  該方法最大的優點是隱蔽性佳,但多次轉換易造成信號丟失,發出的磁信號也容易受到其它電磁波的干擾(如手機、收音機等發出的電磁信號)。

  當扭轉頭部時,較靠近頭部一側的磁信號會減弱,使得用戶接收到的音頻信號不穩定(例如,當兒童感覺上課內容乏味,出現困意時,頭常常會不自主的低下,若此時佩戴磁感應項圈接收裝置,會使前方的信號受阻,使兒童無法聽見聲音而出現更“不感興趣”的表現)。

  4. FM助聽器及音靴

  為獲得穩定舒適的音質,又不影響美觀,一種具備FM功能的助聽器已逐漸取代上述裝置,從而更有效的實現助聽器與FM系統的融合。

  而一些沒有FM功能的助聽器,還可以通過外接音靴(一種能與助聽器對接的FM接收器裝置)來實現。

  目前,FM助聽器和音靴是眾多助聽器耦合方式中使用最廣泛的一種。

  更多詳情請登錄www.hnghng.cn。

earway.cn 版權所有 ? 2025 助聽器品牌,助聽器價格,純音聽力計-聆康聽力集團聽覺有道官網 蜀ICP備2022000840號

蜀公網安備 51015602000276號

頂部
主站蜘蛛池模板: 亚洲伦乱| 国产又粗又猛视频| 啊┅┅快┅┅用力啊岳视频| 熊出没之古宅探宝免费播放| 国产女人18毛片水真多18精品| 香蕉久热| 亚洲欧美综合自拍| 天堂av一区二区三区| 秋霞啪啪片| 久久99在线观看| 亚洲午夜无码av毛片久久| 亚洲av无码一区二区三区在线播放| www.好了av| h片在线播放| 日日躁夜夜躁aaaabbbb| 乱人伦av| 懂色av蜜桃av| 午夜影院免费| 总受合集lunjian双性h| 精品三级电影| 在线免费观看黄色小视频| 欧美一卡二卡三卡| 国产欧美一区二区三区在线| 福利在线视频观看| 国产精品久久久久久在线观看| 337p日本| 国产伊人一区| 超碰加勒比| 成 人 黄 色 片 在线播放| 天天撸一撸| 成人9禁啪啪无遮挡免费漫画| 欧美黄色性| 亚洲欧美校园春色| 日本黄色高清视频| 国产精品久久久毛片| 麻豆黄网| 久久精品首页| 麻豆精品导航| 毛片天天看| 97精品一区二区三区| 成年人黄色网址| 久久美女性网| 麻豆影音先锋| www.久久av| 国产精品久久久久电影| 中国大陆毛片| 五月天狠狠操| 久久久久成人精品无码| 五月精品视频| 自拍欧美亚洲| 成人性电影| 干中文字幕| 夜色综合| 国产成人av片| 视频免费1区二区三区| 亚洲AV无码精品一区二区三区| 黄色一类片| 怡春院av| 亚洲小说欧美激情另类| 成人羞羞免费| 久久久精品一区二区| 女同毛片一区二区三区| 国产精品视频a| 亚洲淫片| 日本韩国欧美一区| 国产综合影院| 叫床语录500句娇喘台词文字| 久久久久久www| 丁香婷婷成人| 亚洲成a| 日本一卡二卡视频| 国产爽爽视频| 波多野结衣av中文字幕| 欧美一区二区视频免费观看| 青娱在线视频| 视频一区二区在线播放| 一区二区日本视频| 一级色视频| 东京久久| 噜噜噜精品欧美成人| 国产高清一二三区| 久久久视| 大尺度视频在线播放| 在线观看视频中文字幕| 华丽的外出免费观看| 91亚色下载| 美女在线免费视频| 久久男人| 国产伦理无套进入| 久久人人爽爽| 日本人妻丰满熟妇久久久久久| 七仙女欲春2一级裸体片| 裸体黄色片| ahd101最新av专区| 免费黄色资源| 亚洲欧美日韩色图| gogo高清视频在线观看| 午夜在线观看影院| 久久综合国产|